On the Successiveness of the Two Extreme Cold Events in China during the 2020/21 Winter According to Cold Air Trajectories

Author:

Zhang Leying,Hou Shuxiu,Xie ZuoweiORCID

Abstract

Two extreme cold air events successively hit China during 28–31 December 2020 (the late 2020 event) and during 6–8 January 2021 (the early 2021 event), which caused great losses. These two events have received extensive attention in relation to synoptic weather systems and remote forcing. Although it has been noted that a near-surface cool condition can greatly impact tropospheric circulation, its role in the successiveness of two such extreme cold waves remains unclear. This study focused on cold air pathways from the Lagrangian perspective, and explored the potential influence of cold air over the key region in terms of connecting the two cold events using a piecewise potential vorticity inversion. With the obtained results, three cold air sources with three corresponding air routes were identified in the two cold events. The northern pathway dominated the late 2020 event, in which the cold air intruded from the eastern Laptev Sea and moved southward to China. In contrast, the early 2021 event was mainly associated with the northwestern pathway in which the cold air came from the Ural Mountains and moved clockwise. Notably, cold air traveling along the western route from western Lake Balkhash arrived at the north of the Tianshan Mountains earlier and amplified the positive height anomaly in situ. Moreover, such an enhanced positive height anomaly moved the direction of the cold air from the northern and northwestern routes southward and thus played a key role in the successiveness of the two extreme cold events.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3