Effect of Window Openable Area and Shading on Indoor Thermal Comfort and Energy Efficiency in Residential Buildings with Various Operating Modes

Author:

Ran Jiandong,Xiong Ke,Dou Mei,Zhong Huizhi,Feng Ya,Tang Mingfang,Yang Zhenjing

Abstract

Solar heat gain and natural ventilation cooling of the indoor environment in buildings are highly influenced by the shading and openable area of windows. In addition to the ambient condition, the Heating, ventilation and air conditioning (HVAC) system’s mode of use can affect the windows’ performance, especially when multiple modes are used in combination (mixed-mode). Although many studies have investigated the mixed-mode application, their conditions for starting/shutting down HVAC equipment and controlling window ventilation are inconsistent with the relevant codes. Here, we propose a mixed-mode operation that resolves the gap between the air conditioning operation temperature and the adaptive comfort upper temperature. It investigates residential buildings’ indoor thermal environment and energy efficiency by combining the effective ventilation opening area ratio (REV) and shading design. Simulation results show that our mixed-mode can reduce the indoor overheating hours by about 50% and the building’s energy consumption by about 50%. We thereby conclude that the openable area of exterior windows in residential buildings in Chongqing should not be less than 10% of the room’s floor axis area where the exterior windows are located. In general, our study expands the existing knowledge of passive energy-saving measures and provides a method for further research on building energy design in hot summer and cold winter regions.

Funder

National Key R&D Program of China

Provincial Key R&D Program of Sichuan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3