Temporal and Spatial Evolution of Precipitation under the Summer Sprite Parent Mesoscale Convective Systems in Japan

Author:

Suzuki Tomoyuki,Kamogawa MasashiORCID,Fujiwara Hironobu,Hayashi SyugoORCID

Abstract

Transient luminous events (TLEs) are electrical discharges in the upper atmosphere caused by vigorous thunderstorms. Six sprites, which are part of TLEs, were observed on 22 July 2013 from Mt. Fuji (3776 m above sea level), Japan. All the six sprites were associated with intense positive cloud-to-ground strikes (+CGs), whose causative positive charges can reside in the stratiform region. Consequently, we assumed that the main sprites causative charges could generate an in situ charging mechanism, accompanied by precipitation growth in the extensive stratiform region. Thus, we supposed that there can be a relationship between the time sequence of surface precipitation intensity and the sprite emissions. In this study, we conclude that time sequences and horizontal evolution of Mesoscale Convective Systems (MCSs) precipitation are associated with sprites. As the result, prior to sprites 1–5, the areal amount of strong precipitation (≥8 mm/h) increased considerably, and only a small increase occurred during sprite 6. Analyzing the time sequence of the percentage of strong and weak precipitation with respect to the total precipitation, it was found that sprites 1–6 occurred within 20 min after the local peaks with respect to strong precipitation compared to total precipitation. In particular, sprites 2–5 occurred very close to local peaks. The rise time to the first peak of the strong precipitation rate associated with the first sprite was 80 min, while the rise time to the last peak associated with sprite 6 was 30 min. The temporal differences until the peaks suggest that the charging speeds, or mechanisms, related to precipitation differ between sprites 1–5 and sprite 6 in parent MCSs.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3