Aerosol Analysis of China’s Fenwei Plain from 2012 to 2020 Based on OMI Satellite Data

Author:

Liu Shuya,Ju Tianzhen,Pan Bingyu,Li Meng,Peng Shuai

Abstract

The Fenwei Plain plays an essential role for China’s three-year action plan to protect the air environment. At present, the high-value area and maximum value of atmospheric aerosol have been effectively controlled, but the governance situation is not stable. Therefore, based on the daily ultraviolet aerosol index (UVAI) data retrieved by Ozone Monitoring Instrument (OMI) from 2012 to 2020, combined with precipitation and temperature and air pressure and lifting index data, this paper analyzes the spatiotemporal distribution characteristics and some influencing factors of UVAI in the Fenwei Plain. The results show that the overall trend of the annual average UVAI value of the Fenwei Plain in 9 years showed two “peaks” in 2013 and 2018, respectively. The high UVAI values are mainly concentrated in the southwest and central areas of the Fenwei Plain. In the study area, UVAI was highest in winter, followed by autumn and spring, and lowest in summer. There were significant negative correlations between precipitation and UVAI and between temperature and UVAI. There were significant positive correlations between air pressure and UVAI and between lifting index and UVAI. According to the backward trajectory clustering results, during the autumn and winter seasons in this area, due to the sand and dust brought by the northwest and the input of aerosols in the coal-producing area and coal-fired heating area, the UVAI value of this time period is higher.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference34 articles.

1. Application of Satellite Remote Sensing Aerosol Optical Properties in Air Pollution Monitoring;Huang;Master’s Thesis,2011

2. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3