Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain

Author:

González-Correa SofíaORCID,Lapuerta MagínORCID,Ballesteros Rosario,Pacheco-Ferrada DiegoORCID,Castro Lina,Cereceda-Balic Francisco

Abstract

Snow covers are greatly affected by particles deposited on their surface. In this work, an experimental campaign was carried out in the Sierra Nevada (Granada, Spain). The optical effect of different contaminating particles on the snow covers was measured using a field spectroradiometric system composed of three upwelling spectroradiometers and three downwelling ones. Sand collected from a Mediterranean beach (Spain), ash collected from the La Palma volcano eruption, haze collected from an event that occurred in Spain, and soot collected from a diesel vehicle were employed for contaminating the snow. Soot, ash, and sand were analysed with X-ray diffraction to obtain their mineralogical composition or their structural characteristics, whereas haze's mineralogical composition was obtained from the literature. From this information, the refractive index of each material was weigh-averaged, considering the refractive indices of their components. After measurements, snow samples were filtered and weighted to evaluate the particle concentrations in the snow. Previous contamination with soot was observed due to the existence of a nearby road. Snow albedo was calculated with the OptiPar model. The experimental and modelled results show that contaminating with sand decreases the snow albedo in the visible range whereas it increases the albedo in the infrared range. However, the rest of the materials lead to a decrease in the albedo in the whole spectrum, although with different intensities depending on the wavelength range.

Funder

Spanish Ministry of Science and Innovation

Chilean project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference62 articles.

1. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment;J. Geophys. Res. Atmos.,2013

2. The Physics of Wind-Blown Sand and Dust;Reports Prog. Phys.,2012

3. Smithsonian Institution (2022, October 07). Report on La Palma Vulcano. Available online: https://volcano.si.edu/volcano.cfm?vn=383010.

4. The Atmospheric Aerosol System: An Overview;Rev. Geophys.,1983

5. Atmospheric Aerosols and Global Climate;J. Aerosol Sci.,1980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3