Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa

Author:

Chidiebere-Mark Nneka MarisORCID,Onyeneke Robert UgochukwuORCID,Uhuegbulem Ifeyinwa Josephine,Ankrah Daniel AduORCID,Onyeneke Louis Uchenna,Anukam Basil Ngozichukwu,Chijioke-Okere Maureen Obiageli

Abstract

This paper explores the nexus between agricultural production, renewable energy, foreign direct investment (FDI), and carbon emissions in Africa, where there is limited evidence on the topic. Relying on panel data covering thirty-one African countries obtained from the World Bank World Development Indicators and FAOSTAT databases, we answered the question of whether agricultural production (proxied by livestock production, fertilizer consumption, and land under cereal cultivation), the use of renewable energy, and FDI increase or reduce carbon emissions. Using the panel autoregressive distributed lag model for analysis, our results show that net FDI, fertilizer consumption, livestock production significantly increased carbon emissions, both in the short run and long run. Meanwhile, renewable energy use consumption significantly decreased carbon emissions, both in the short run and long run. Specifically, a 1% increase in net FDI increased total carbon emissions by 0.003% in the short run and by 0.01% in the long run. Renewable energy consumption significantly decreased carbon emissions, both in the short run and long run. A 1% increase in renewable energy consumption decreased total carbon emissions by 0.16% in the short run and by 0.22% in the long run. Additionally, fertilizer consumption and livestock production significantly increased carbon emissions in the short run and long run. A 1% increase in fertilizer consumption increased total carbon emissions by 0.01% in the short run and by 0.04% in the long run, while a 1% increase in livestock production increased total carbon emissions by 0.20% in the short run and by 0.56% in the long run. The findings call for investment in renewable energy technologies and consumption while advocating for large-scale uptake of climate-smart agriculture, and environmentally friendly targeted foreign direct investments on the continent.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference110 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2022, November 23). Summary for Policymakers, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf.

2. Carbon emissions and economic growth in Africa: Are they related?;Olubusoye;Cogent Econ. Financ.,2020

3. Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., and Fradera, R. (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

4. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., and Eickemeier, P. (2022, November 23). Summary for Policymakers, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WGIIIAR5_SPM_TS_Volume-3.pdf.

5. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., and Eickemeier, P. (2022, November 23). Agriculture, Forestry and Other Land Use (AFOLU), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3