Numerical Simulations of Cloud Number Concentration and Ice Nuclei Influence on Cloud Processes and Seeding Effects

Author:

Fang Wen,Lou XiaofengORCID,Zhang Xing,Fu Yu

Abstract

Aerosols, through cloud condensation nuclei (CCN) or ice nuclei (IN), affect cloud microphysics. With increasing concentrations of aerosols, it is important to consider the impact of IN along with CCN on clouds and precipitation in numerical simulations; further, aerosols may also affect the weather-modification seeding effect. On the basis of the observation of natural IN concentration and cloud-drop number concentrations, numerical sensitivity experiments for a snowfall case were designed to study the effects of parameters of IN and cloud number concentrations at the cloud base to consider the CCN effects on clouds and precipitation as well as weather-modification seeding effects. Generally, with smaller cloud-drop number concentration, the mass contents were much lower. With more ice nuclei, more ice crystals were able to nucleate, and additional snow particles were generated through ice crystals. Cloud-drop number concentrations heavily affected the location and amount of snowfall. During the 1e9 test, 2.4 mm was the highest reduction in the amount of snowfall; additionally, the amount of snowfall from the combined impacts of increased IN and cloud-drop number decreased in wide areas, and its maximum precipitation reduction exceeded 2.7 mm as well as up to 15% of the daily amount of snowfall. More IN reduced the artificial seeding effect, lowered the increase in snowfall in the center of the seeding, and lowered the reduction of snowfall in the reduction center of the seeding. With more IN, the seeding effect was able to shift approximately 0.6% from the 3.9% seeding effect of the control simulation.

Funder

National Natural Science Foundation of China

open project of CMA Cloud-Precipitation Physics and Weather Modification Key Laboratory

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A numerical simulation of CCN impacts on weather modification efficiency;Frontiers in Environmental Science;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3