Abstract
Several studies have assessed droughts and vegetation considering climatic factors, particularly El Niño-Southern Oscillation (ENSO) at different latitudes. However, there are knowledge gaps in the tropical Andes, a region with high spatiotemporal climatic variability. This research analyzed the relationships between droughts, vegetation, and ENSO from 2001–2015. Meteorological drought was analyzed using the Standardized Precipitation Evapotranspiration Index (SPEI) for 1, 3 and 6 months. Normalized Difference Vegetation Index (NDVI) was used to evaluate vegetation, and ENSO indexes were used as climate drivers. The Wavelet coherence method was used to establish time-frequency relationships. This approach was applied in the Machángara river sub-basin in the Southern Ecuadorian Andes. The results showed significant negative correlations during 2009–2013 between the SPEI and NDVI, with the SPEI6 lagging by nine months and a return period of 1.5 years. ENSO–SPEI presented the highest negative correlations during 2009–2014 and a return period of three years, with ENSO leading the relationship for around fourteen months. ENSO-NDVI showed the highest positive correlations during 2004–2008 and a return period of one year, with the ENSO indexes continually delayed by approximately one month. These results could be a benchmark for developing advanced studies for climate hazards.
Funder
University of Azuay through its Vicerrectorado de Investigaciones and Instituto de Estudios de Régimen Seccional del Ecuador
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献