Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle

Author:

Sejian VeerasamyORCID,Shashank Chikamagalore GopalakrishnaORCID,Silpa Mullakkalparambil Velayudhan,Madhusoodan Aradotlu Parameshwarappa,Devaraj ChinnasamyORCID,Koenig Sven

Abstract

Non-invasive methods of detecting heat stress magnitude for livestock is gaining momentum in the context of global climate change. Therefore, the objective of this review is to focus on the synthesis information pertaining to recent efforts to develop heat stress detection systems for livestock based on multiple behavioral and physiological responses. There are a number of approaches to quantify farm animal heat stress response, and from an animal welfare point of view, these can be categorized as invasive and non-invasive approaches. The concept of a non-invasive approach to assess heat stress primarily looks into behavioral and physiological responses which can be monitored without any human interference or additional stress on the animal. Bioclimatic thermal indices can be considered as the least invasive approach to assess and/or predict the level of heat stress in livestock. The quantification and identification of the fecal microbiome in heat-stressed farm animals is one of the emerging techniques which could be effectively correlated with animal adaptive responses. Further, tremendous progress has been made in the last decade to quantify the classical heat stress endocrine marker, cortisol, non-invasively in the feces, urine, hair, saliva and milk of farm animals. In addition, advanced technologies applied for the real-time analysis of cardinal signs such as sounds through microphones, behavioral images, videos through cameras, and data stalking body weight and measurements might provide deeper insights towards improving biological metrics in livestock exposed to heat stress. Infrared thermography (IRT) can be considered another non-invasive modern tool to assess the stress response, production, health, and welfare status in farm animals. Various remote sensing technologies such as ear canal sensors, rumen boluses, rectal and vaginal probes, IRT, and implantable microchips can be employed in grazing animals to assess the quantum of heat stress. Behavioral responses and activity alterations to heat stress in farm animals can be monitored using accelerometers, Bluetooth technology, global positioning systems (GPSs) and global navigation satellite systems (GNSSs). Finally, machine learning offers a scalable solution in determining the heat stress response in farm animals by utilizing data from different sources such as hardware sensors, e.g., pressure sensors, thermistors, IRT sensors, facial recognition machine vision sensors, radio frequency identification, accelerometers, and microphones. Thus, the recent advancements in recording behavior and physiological responses offer new scope to quantify farm animals’ heat stress response non-invasively. These approaches could have greater applications in not only determining climate resilience in farm animals but also providing valuable information for defining suitable and accurate amelioration strategies to sustain their production.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3