Author:
Sun Ruidi,Gu Shengyang,Dou Xiankang,Li Na
Abstract
We studied the correlations between the migrating and non-migrating tides and solar cycle in the mesosphere and lower thermosphere (MLT) regions between 60° S and 60° N, which are in LAT-LON Earth coordinates, by analyzing the simulation datasets from the thermosphere and ionosphere extension of the Whole Atmosphere Community Climate Model (WACCM-X). A least squares fitting method was utilized to obtain the daily mean migrating tides and non-migrating tides. The Pearson linear correlation coefficient was used to analyze the correlations between tides and solar activity. Our analysis shows that the negative correlations between tides and solar activity are mostly impacted by the first symmetrical structure of the tidal modes for both migrating and non-migrating components. The coefficient of molecular thermal conductivity for the first symmetrical structure is small at low solar flux, so the tides dissipate more slowly when the F10.7 cm radio flux level is low. Thus, the amplitudes of tidal variations under a solar minimum condition are larger than those under a solar maximum condition. The correlation between tides and solar activity could also be influenced by some other factors, such as geomagnetic activity and the density of carbon dioxide CO2 on Earth. The tidal variations can be influenced by westward background wind, which grows stronger as geomagnetic activity rises. Further, dissipation of the tides decreases because the heat conduction and molecular viscosity are weakened in the cooling thermosphere caused by increasing CO2, which results in larger tidal amplitudes under the solar maximum condition. It is found that the correlations between tides and solar cycle vary at different altitudes and latitudes. The negative correlations are most possibly influenced by the first symmetrical structure of tidal variations and may also be impacted by geomagnetic activity. The positive correlations are impacted by the density of CO2.
Funder
National Natural Science Foundation of China
the B-type Strategic Priority Program of the Chinese Academy of Sciences
the Chinese Meridian Project
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献