The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate

Author:

Zhou Yu-Wei,Chow Kim-ChiuORCID,Xiao Jing

Abstract

To study the impact of model horizontal resolution on the simulated climate of Mars, we increased the model resolution of the Mars general circulation model MarsWRF from the commonly used 5° × 5° (standard resolution, SR) to 3° × 3° (high resolution, HR). We applied an interactive dust scheme to parameterize the dust-lifting process and investigated the effect of model resolution from three aspects: (1) temporal variation; (2) horizontal distribution; and (3) vertical distribution. From the results of the simulations, we obtained the following conclusions: (1) The seasonal variation in some zonal-mean fields such as the column optical depth and T15 temperature could be reasonably simulated in both the SR and HR simulations, and the results were similar. (2) The effect of resolution on the horizontal distribution of the climate fields was significant at some regions with complicated terrain. (3) The HR simulation could be different from the SR simulation in the vertical dynamic field and thermal field. To obtain more accurate simulation results, it is recommended to use a higher resolution simulation when the vertical distribution is a major concern in the study.

Funder

FDCT of Macau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3