Abstract
To study the impact of model horizontal resolution on the simulated climate of Mars, we increased the model resolution of the Mars general circulation model MarsWRF from the commonly used 5° × 5° (standard resolution, SR) to 3° × 3° (high resolution, HR). We applied an interactive dust scheme to parameterize the dust-lifting process and investigated the effect of model resolution from three aspects: (1) temporal variation; (2) horizontal distribution; and (3) vertical distribution. From the results of the simulations, we obtained the following conclusions: (1) The seasonal variation in some zonal-mean fields such as the column optical depth and T15 temperature could be reasonably simulated in both the SR and HR simulations, and the results were similar. (2) The effect of resolution on the horizontal distribution of the climate fields was significant at some regions with complicated terrain. (3) The HR simulation could be different from the SR simulation in the vertical dynamic field and thermal field. To obtain more accurate simulation results, it is recommended to use a higher resolution simulation when the vertical distribution is a major concern in the study.
Subject
Atmospheric Science,Environmental Science (miscellaneous)