Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network

Author:

Liu Yanzhang,Cai Jinqi,Tan Guirong

Abstract

Deep learning artificial intelligence technology, which has the advantages of nonlinear mapping ability, massive information extraction ability, spatial-temporal modeling ability, and so on, provides new ideas and methods for further improving the accuracy of weather and climate extreme event prediction. A transfer learning CNN (Convolutional Neural Networks) classification model is established to classify the circulation patterns, along with the newly reconstructed dataset of regional persistent historical heavy rain events, daily rainfall data of 2474 observational stations, and the NCEP/NCAR global reanalysis data of daily geopotential height field in 1981–2018. Different from previous classifications, usually with one level variable, here, in addition to 500 hPa heights, 200 hPa zonal winds and 850 hPa meridional winds over the key areas are also considered in the model. The results show that the multi-level circulation pattern classification based on the transfer learning CNN network has a higher accuracy in the independent test than the single-level model, with the accuracy reaching 92.5% (while only 85% for the single-level model). The spatial correlation coefficient of precipitation between each typical mode and related patterns obtained by the multi-level transfer learning CNN classification is greater than that obtained by the single-level transfer learning CNN, and the variance of 500 hPa heights between each typical mode and the associated patterns is also greater than that obtained by the single-level transfer learning CNN. These results show that the performance of the classification by the multi-level transfer learning CNN model is better than that by the single-level transfer learning CNN. The study is helpful to develop circulation classifications related to large-scale weather or climate disaster events and then to provide a physical basis for further improving the forecast effect and extending the valid time of the forecast through combining the numerical model products.

Funder

National Natural Science Foundation of China

Basic science center project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference53 articles.

1. ANN prediction of summer rainfall patterns of east China;Sun;J. Nanjing Inst. Meteor.,1998

2. Ensemble prediction of summer rainfall patterns over eastern China based on artificial neural networks;Sun;Trans. Atmos. Sci.,2013

3. Study and comparison of ensemble forecasting based on artificial neural network;Jin;Acta Meteorol. Sin.,1999

4. An application of artificial neural network (ANN) to rainfall mid-range forecasting;Shi;Meteor. Mon.,2001

5. From Physical Model to Intelligent Analysis: A New Exploration to Reduce the Uncertainty of Weather Forecast;Xu;Meteor. Mon.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3