Abstract
Solar energy has the advantages of being green, renewable, and energy-efficient. The use of solar energy in buildings can result in significant energy savings, and a great deal of practical and theoretical research has been conducted on solar buildings around the world. Southern Shaanxi belongs to a climate zone with hot summers and cold winters (HSCW). The mean room temperature is 4 °C, and it is lower than 2 °C at night, which greatly exceeds the thermal comfort range that the human body can bear. Aiming at a range of challenges including backward heating methods and low heating efficiency in southern Shaanxi, a fully passive thermal storage wall heating system (TSWHS) is proposed for traditional houses in the area. The specific method is to set up a thermal storage wall (TSW) outside the outer walls on the east, west, and south sides of the residential buildings. The wall is provided with an air exchange port, and there is no glass in the outer area of the doors and windows, which does not affect the normal application. The principle is that after the TSW receives solar radiation, the temperature of the internal HDPE (high-density polyethylene) and the air inside the cavity rises, which raises the interior temperature via the heat transfer and the air exchange port inside the TSW. The hot air inside the thermal wall achieves the purpose of heating. Lastly, through a comparison with the original heating system (OHS), it is confirmed that the TSWHS has certain practicability. According to an experimental simulation, the system can increase the indoor temperature by an average of 5.1 °C in winter and save about 1726.43 kWh of energy, accounting for 27.24% of the energy saving.
Funder
the Ankang University Education Teaching Reform Research Project in 2022
the Shaanxi Provincial Department of Education Special Project
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献