Molecule Simulation of CH4/CO2 Competitive Adsorption and CO2 Storage in Shale Montmorillonite

Author:

Hou DaliORCID,Gong Fengming,Tang Hongming,Guo Jianchun,Qiang Xianyu,Sun Lei

Abstract

The main source of production in the middle and late stages of shale gas extraction is the adsorbed gas in shale, and the adsorbed gas in shale mainly comes from organic matter casein and clay minerals in shale; therefore, this paper uses sodium-based montmorillonite to characterize the clay minerals in shale and study the CH4 adsorption law in clay minerals, and this study has certain guiding significance for shale gas extraction. In addition, this paper also conducts a study on the competitive adsorption law of CH4 and CO2, and at the same time, predicts the theoretical sequestration of CO2 in shale clay minerals, which is a reference value for the study of CO2 burial in shale and is beneficial to the early realization of carbon neutral. In this paper, the slit model of sodium-based montmorillonite and the fluid model of CH4 and CO2 were constructed using Materials Studio software, and the following two aspects were studied based on the Monte Carlo method: Firstly, the microscopic adsorption behavior of CH4 in sodium-based montmorillonite was studied, and the simulations showed that the adsorption capacity of montmorillonite decreases with increasing temperature, increases and then decreases with increasing pressure, and decreases with increasing pore size. CH4 has two states of adsorption and free state in the slit. The adsorption type of CH4 in montmorillonite is physical adsorption. Secondly, the competitive adsorption of CH4 and CO2 in sodium-based montmorillonite was studied, and the simulations showed that the CO2 repulsion efficiency increased with increasing CO2 injection pressure, and the CO2/CH4 competitive adsorption ratio decreased with increasing pressure. The amount of CO2 storage decreased with increasing temperature and increased with increasing CO2 injection pressure.

Funder

China Postdoctoral Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference34 articles.

1. Fractured shale-gas systems;Curtis;AAPG Bull.,2002

2. Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons

3. A molecular dynamics simulation of methane adsorption in graphite slit-pores;Liu;Chin. J. Comput. Phys.,2013

4. Methane Adsorption on Carbon Models of the Organic Matter of Organic-Rich Shales

5. Porous graphene oxide frameworks: Synthesis and gas sorption properties

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3