Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer

Author:

Zhang Bin,Fu Liping,Mao Tian,Hu Xiuqing,Jiang Fang,Jia Nan,Wang Tianfang,Peng Ruyi,Wang Jinsong

Abstract

The OI135.6 nm radiation intensity and the associated change with solar activity are very complex, and this is particularly the case during November 2020. In this paper, we investigated the OI135.6 nm radiation intensity in the low-latitude ionosphere during a quiet geomagnetic period. The Ionospheric Photometer (IPM) instrument onboard the FY-3(D) meteorological satellite was employed to measure the OI135.6 nm night airglow at 02:00 LT (local time) and its response to the solar activity. The results showed there is a statistically significant correlation between the intensity of the equatorial ionospheric anomaly (EIA) and solar activity after midnight. The EIA at 02:00 LT and before midnight shared the same climatological characteristics—strong in equinoxes and weak in solstices. In November 2020, when the F10.7 flux significantly increased, the OI135.6 nm radiation intensity in the EIA region recorded a 100–200% increase compared to the previous month, which was much higher than in the same period in the preceding two years. A similar phenomenon was observed at the same time by the Global-scale Observations of Limb and Disk (GOLD), which makes continuous observations of ionospheric structure variation in global patterns. Data analysis suggests that the EIA at 02:00 LT was due to the attenuation of the EIA before midnight after the disappearance of the eastward electric field. The magnetic latitude of the EIA crest (hereafter denoted by θmlF2) indicates a range-and-seasonal rule of hemispherical asymmetry: closer to the geomagnetic equator in equinoxes and farther away from the geomagnetic equator in solstices. Further studies are needed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3