Climate Change Impacts on Soil Erosion and Sediment Delivery to German Federal Waterways: A Case Study of the Elbe Basin

Author:

Uber Magdalena,Rössler OleORCID,Astor Birgit,Hoffmann Thomas,Van Oost Kristof,Hillebrand GudrunORCID

Abstract

Climate change is an important driver of soil erosion and sediment delivery to water bodies. We use observation data from 193 locations in the Elbe River basin as well as spatially distributed erosion rates and sediment delivery simulated in the WaTEM/SEDEM to identify current erosion hotspots and to assess the impact of climate change on future erosion and sediment delivery. We further quantified the uncertainty of the modelling approach by using an ensemble of 21 combinations of global and regional climate models, different emission scenarios and stochastic erosion modelling. Erosion rates are highest on hilly arable land in the central part of the basin as well as in the northeast of Bohemia. Despite considerable differences between climate models and emission scenarios and considerable uncertainties of the erosion model, a future increase in soil erosion and sediment delivery is highly likely. Using the median of climate models and behavioral erosion models, this increase can be up to 14% higher in the far future (2071–2100) than in the reference period (1971–2000) using RCP 8.5. The increase is highest in the Czech part of the basin.

Funder

German Federal Ministry for Digital and Transport Network of Experts

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3