Historical Changes of Black Carbon in Snow and Its Radiative Forcing in CMIP6 Models

Author:

Chen YangORCID,Li Xuejing,Xing YuxuanORCID,Yan Shirui,Wu DongyouORCID,Shi Tenglong,Cui JiecanORCID,Zhang Xueying,Niu Xiaoying

Abstract

Black carbon in snow (BCS) has a significant impact on global climate and is an important component of Earth system modeling. Here, we provide a comprehensive evaluation of BCS simulations in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and its radiative forcing on a global scale. Overall, the multi-model mean generally captures the characteristics of BCS spatial patterns, with maximum concentrations in East Asia and the Tibetan Plateau (~120 ng·g−1), and the lowest in Antarctica (~0.05 ng·g−1). The BCS concentrations in all CMIP6 multi-model mean and individual models generally exhibit a temporally increasing trend globally, with particularly large increases after the 1940s. In terms of seasonal cycles, individual models are generally consistent in most regions. Globally, BCS concentrations are highest around January and lowest in September. The albedo reduction in the Tibetan Plateau and East Asia simulated by the CMIP6 multi-model mean reached ~0.06 in 2014 and may influence climate more than expected.

Funder

State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences

Natural Science Foundation of Gansu Province, China

APC

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3