Elemental Variability of PM2.5 Aerosols in Historical and Modern Areas of Jeddah, Saudi Arabia

Author:

Amin Mohammed A.,Almalawi Dhaifallah R.,Ali Safaa S. M.ORCID,Badawi AliORCID,Mersal Gaber A. M.,Boman JohanORCID,Shaltout Abdallah A.

Abstract

Air particulate matter with a diameter of 2.5 µm (PM2.5) were assembled for a whole year from the historical Jeddah district. Additional PM2.5 aerosols were collected during the autumn and winter seasons from another newly constructed district in Jeddah city (Alnaeem). The annual concentration of the total mass of the PM2.5 aerosols from the historical Jeddah site was found to be 43 ± 6 µg/m3. In addition, the average of the total mass concentration at the Alnaeem site was 61 ± 14 µg/m3. These values were greater than the annual mass concentration of the air quality standards of the European Commission (25 µg/m3) and the World Health Organization (10 µg/m3). The elemental analysis of the collected fine atmospheric aerosols was achieved by energy dispersive X-ray fluorescence (EDXRF) with three secondary targets (CaF2, Ge, and Mo). Quantitative elemental analyses of twenty-two (22) elements were achieved starting from the low atomic number element (Na) up to the high atomic number element (Pb). Although the historical Jeddah site is not well organized, the elemental concentrations and total mass concentrations were lower than those of the other site. The statistical analyses including enrichment factors, correlation analysis, and the principal component analysis revealed more information about the source identification of the PM2.5 aerosols collected from both locations. It was recognized that the elements Al, Si, K, Ca, Ti, Mn, Fe, Rb, and Sr originated from a natural source. On the other hand, the elements Ta, Br, Pb, Sc, Ni, Cu, Zn, and S originated from anthropogenic sources. Finally, the elements Na, Cl, and Br came mainly from the sea spray source.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

1. Health effects of outdoor air pollution;Bascom;Am. J. Respir. Crit. Care Med.,1996

2. Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective;Bytnerowicz;Environ. Pollut,2007

3. Air pollution, greenhouse gases and climate change: Global and regional perspectives;Ramanathan;Atmos. Environ.,2009

4. WHO (2014). Burden of Disease from Household Air Pollution for 2012. Summary of Results, WHO.

5. Mortality in the Medicare population and chronic exposure to fine particulate air pollution in urban centers (2000–2005);Zeger;Environ. Health Perspect.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3