Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance

Author:

Cao WenORCID,Duan Chunfeng,Yang Taiming,Wang Sheng

Abstract

Rice is a major staple food grain for more than half of the world’s population, and China is the largest rice producer and consumer in the world. In a climate-warming context, the frequency, duration and intensity of heat waves tend to increase, and rice production will be exposed to higher heat damage risks. Understanding the negative impacts of climate change on the rice supply is a critical issue. In this study, a new perspective on agricultural weather index insurance is proposed to investigate the impact of extreme high-temperature events on rice production in South China in the context of climate change. Based on data from meteorological stations in Anhui Province in China from 1961 to 2018 and the projected data from five Global Climate Models under three representative concentration pathway (RCP) scenarios from 2021 to 2099, the spatial–temporal characteristics of heat stress and its influence on rice production were analyzed by employing a weather index insurance model. The interdecadal breakpoints in the trends of the heat stress weather insurance index (HSWI) and the payout from 1961 to 2018 in 1987 were both determined, which are consistent with the more significant global warming since the 1980s. The largest increase after 1987 was found in the southeastern part of the study area. The projected HSWI and the payout increased significantly from 2021 to 2099, and their growth was faster with higher radiative forcing levels. The HSWI values were on average 1.4 times, 3.3 times and 6.1 times higher and the payouts were on average 3.9 times, 9.8 times and 15.0 times higher than the reference values for the near future, mid-future and far future, respectively. The results suggest that a more severe influence of heat damage on rice production will probably happen in the future, and it is vital to develop relevant adaptation strategies for the effects of a warmer climate and heat stress on rice production. This paper provides an alternative way to transform the evaluation of the extreme climate event index into the quantitative estimation of disaster impacts on crop production.

Funder

Climate Change Project of China Meteorological Administration

Innovation Team Construction Plan of Anhui Meteorological Bureau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference54 articles.

1. Food and Agricultural Organization of the United Nations,2019

2. Innovation and practice of high-yield rice cultivation technology in China;Zhu;Sci. Agric. Sin.,2015

3. Current Status and Challenges of Rice Production in China

4. Rice responses and tolerance to high temperature;Fahad,2019

5. High Temperature at Flowering Inhibits Swelling of Pollen Grains, a Driving Force for Thecae Dehiscence in Rice (Oryza sativaL.)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3