Removing Chlorobenzene via the Synergistic Effects of Adsorption and Catalytic Oxidation over Activated Carbon Fiber Loaded with Transition Metal Oxides

Author:

Zhang Ying,Zhu Meiwen,Wei Qing,Wang Mingxi

Abstract

This study focused on the elimination of chlorobenzene by dual adsorption/catalytic oxidation over activated carbon fibers (ACFs) loaded with transition metal oxides (TMOs). The TMOs were successfully loaded on the ACFs by the incipient wetness impregnation method, which has the advantages of easy preparation, low cost, and size uniformity. The removal effects for chlorobenzene (CB) were investigated on pristine ACFs and TMOs@ACFs in a fix-bed reactor. The adsorption/catalytic oxidation experiments result demonstrated that ACFs can be used as a very efficient adsorbent for the removal of low-concentration CB at the low temperature of 120 °C; the breakthrough time of CB over pristine ACFs can reach 15 h at an inlet concentration of 5000 ppmv and space velocity of 20,000 h−1. As the bed temperature rose above 175 °C, the CB removal mainly contributed to the catalytic oxidation of MnO2; a preferable CB removal ratio was achieved at higher temperatures in the presence of more MnO2. Therefore, CB can be effectively removed by the dual adsorbent/catalyst of MnO2@ACF at the full temperature range below 300 °C.

Funder

The Fund of Innovation Project of Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3