Thermal and Acoustic Characterization of Innovative and Unconventional Panels Made of Reused Materials

Author:

Neri ManuelaORCID

Abstract

Europe calls for a transition to the circular economy model based on recycling, reuse, the proper design of products, and repair. Recycling requires energy and chemical products for waste processing; on the contrary, reusing reduces the impact of transportation and expands the life of materials that cannot be recycled. This article highlights the characteristics of selected end-of-life materials; it aims to raise awareness among manufacturers to consider products’ conscious design to facilitate their reuse in different sectors. Panels 7 cm thick, realized by assembling cardboard packaging, egg boxes, bulk polyester, and felt, have been experimentally tested to understand whether they can be installed indoors to improve thermal and acoustic comfort. The panels’ equivalent thermal conductivity λeq measured through the guarded hot plate method is 0.071 W/mK. Acoustic tests have been performed in a sound transmission room and a reverberation room. The weighted sound reduction index Rw is 19 dB, the weighted sound absorption coefficient αw is 0.30, and the noise reduction coefficient NRC is 0.64. The measured properties have been compared to those of commercial materials, and the results show that the panels have interesting properties from the thermal and acoustic points of view. They could be employed in the building sector and in disadvantaged contexts where low-income people cannot afford commercial insulating materials. Although other factors, such as fire resistance, need to be evaluated, these results show that the proposed approach is feasible.

Funder

Department of Mechanical and Industrial Engineering of the University of Bresci

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference52 articles.

1. Circular Economy: Definition, Importance and Benefits. 2022.

2. Circular Economy. 2022.

3. Circular Economy, Recycling and End-of-Waste;Ragossnig;Waste Manag. Res.,2019

4. European Commission—Waste Framework Directive. 2022.

5. Karimi, F., Soltani, P., Zarrebini, M., and Hassanpour, A. Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. J. Build. Eng., 2008. 50.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3