Stability Analyses and Cable Bolt Support Design for A Deep Large-Span Stope at the Hongtoushan Mine, China

Author:

Zhao ,Li ,Zhang ,Yang

Abstract

This study presents stability analyses and a cable bolt support design for a typical deep large-span stope (1-1# stope) at the Hongtoushan mine in China, using an integrated empirical and numerical method. Detailed field work including quantification of joint distribution and surface quality, along with laboratory test on intact rock samples, were performed to obtain the geotechnical properties of rock masses. The rock mass of the 1-1# stope was characterized by rock mass rating (RMR), rock mass quality (Q), and geological strength index (GSI), and then the modulus, peak strength, cohesive strength, and internal friction angle of the rock mass were estimated. The stability of the stope was then evaluated by empirical (RMR, stability graph) and numerical approaches (limit equilibrium analyses with UNWEDGE and stress-strain analyses with FLAC3D), considering of the effects of rock mass quality, induced stress, and large-span. A cable bolt support system obtained from the empirical method, was then further analyzed using the FLAC3D and UNWEDGE codes. The results show that the maximum plastic zone thickness and vertical displacement at the stope roof decrease significantly and the safety factor of the unstable wedge block increases significantly after installing the cable bolt support systems recommended by the empirical method. Therefore, it is suggested that an integrated empirical and numerical method is used to obtain quantitative stability assessment and optimum cable bolt support design for deep large-span stope roofs.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference77 articles.

1. Fault tree analysis of roof falling accident in mine;Wang;J. Met. Min.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3