Sustainable Approach to Eradicate the Inhibitory Effect of Free-Cyanide on Simultaneous Nitrification and Aerobic Denitrification during Wastewater Treatment

Author:

Mpongwana Ncumisa,Ntwampe Seteno K. O.ORCID,Omodanisi Elizabeth I.ORCID,Chidi Boredi S.ORCID,Razanamahandry Lovasoa C.ORCID

Abstract

Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (FCN) possessing the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), FCN still enters MWSSs through various pathways; hence, it has been suggested that FCN resistant or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms in SNaD have been observed to adopt a diauxic growth strategy to sequentially degrade FCN during primary growth and subsequently degrade TN during the secondary growth phase. However, FCN degrading microorganisms are not widely used for SNaD in MWSSs due to inadequate application of suitable microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage SNaD. This review expatiates the biological remedial strategy to limit the inhibition of SNaD by FCN through the use of FCN degrading or resistant microorganisms. The use of FCN degrading or resistant microorganisms for SNaD is a cost-effective method compared to the use of other methods of FCN removal prior to TN removal, as they involve multi-stage systems (as currently observed in MWSSs). The use of FCN degrading microorganisms, particularly when used as a consortium, presents a promising and sustainable resolution to mitigate inhibitory effects of FCN in SNaD.

Funder

Cape Peninsula University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3