Abstract
The focus of this study is to design and integrate silver/silver chloride (Ag/AgCl) electronic textile (e-textile) electrodes into different textile substrates to evaluate their ability to monitor electrodermal activity (EDA). Ag/AgCl e-textiles were stitched into woven textiles of cotton, nylon, and polyester to function as EDA monitoring electrodes. EDA stimulus responses detected by dry e-textile electrodes at various locations on the hand were compared to the EDA signals collected by dry solid Ag/AgCl electrodes. 4-h EDA data with e-textile and clinically conventional rigid electrodes were compared in relation to skin surface temperature. The woven cotton textile substrate with e-textile electrodes (0.12 cm2 surface area, 0.40 cm distance) was the optimal material to detect the EDA stimulus responses with the highest average Pearson correlation coefficient of 0.913 ± 0.041 when placed on the distal phalanx of the middle finger. In addition, differences with EDA waveforms recorded on various fingers were observed. Trends of long-term measurements showed that skin surface temperature affected EDA signals recorded by non-breathable electrodes more than when e-textile electrodes were used. The effective design criteria outlined for e-textile electrodes can promote the development of comfortable and unobtrusive EDA monitoring systems, which can help improve our knowledge of the human neurological system.
Funder
Canada Foundation for Innovation
Natural Sciences and Engineering Research Council of Canada
Subject
Clinical Biochemistry,General Medicine
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献