Measuring Surface and Interfacial Tension In Situ in Microdripping Mode for Electrohydrodynamic Applications

Author:

Budhwani Karim I.ORCID,Pekmezi Gerald M.,Selim Mohamed M.

Abstract

Walking on water is made possible, at least for tiny insects, by molecular interaction at the interfaces of dissimilar materials. Impact of these interactions—surface tension (SFT) and, more broadly, interfacial tension (IFT)—is particularly evident at micro and nano sizescales. Thus, implications of walking on water can be significant for SFT or IFT (S/IFT)-driven nanofabrication technologies, such as electrohydrodynamic atomization (EHDA), in developing next generation biomimetic microphysiological systems (MPS) and drug delivery systems (DDS). However, current methods for estimating S/IFT, based on sessile drops or new surface formation on a ring or plate, are unsuitable for integration with EHDA assemblies used in electrospinning and electrospraying. Here, we show an in situ method for estimating S/IFT specifically devised for EHDA applications using signal processing algorithms that correlate the frequency and periodicity of liquid dispensed in EHDA microdripping mode with numerical solutions from computational fluid dynamics (CFD). Estimated S/IFT was generally in agreement with published ranges for water–air, 70% ethanol–air, chloroform–air, and chloroform–water. SFT for solutions with surfactants decreased with increasing concentrations of surfactant, but at relatively higher than published values. This was anticipated, considering that established methods measure SFT at boundaries with asymmetrically high concentrations of surfactants which lower SFT.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3