Abstract
Wire electrochemical micromachining (WECMM) technology is regarded a promising method to fabricate high aspect ratio microstructures on hard-to-machining materials, however, the by-product accumulation in the machining gap limits its application. In this paper, a new method called ultrasonic-assisted wire electrochemical micromachining (UA-WECMM) is proposed to improve the machining performance of WECMM. Firstly, a flow-field simulation in the machining gap was carried out; the results showed that the ultrasonic vibration of electrode can remarkably enhance the mass transport in the machining gap and improve the machining condition. Secondly, experiments were performed to confirm the effect of ultrasonic vibration, which illustrated that the vibration with proper amplitude can reduce the slit width and improve the morphology of machined surface. Moreover, the influence of other machining parameters were also discussed. Finally, a T-type micro connector with good surface roughness (Ra 0.286 μm) was fabricated on a 300-μm-thick 304 stainless steel workpiece and a micro gear (diameter: 3.362 mm; Ra: 0.271 μm) with an aspect ratio of 7 was fabricated on a 2-mm-thick workpiece. It is proved that the proposed ultrasonic-assisted wire electrochemical micromachining method has considerable potential and broad application prospects.
Funder
Key Technologies Research and Development Program
Key Technology Research and Development Program of Shandong
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献