Design and Implementation of a Multifunction Wearable Device to Monitor Sleep Physiological Signals

Author:

Liao Lun-DeORCID,Wang Yuhling,Tsao Yung-ChungORCID,Wang I-Jan,Jhang De-Fu,Chuang Chiung-ChengORCID,Chen Sheng-Fu

Abstract

We present a wearable device built on an Adafruit Circuit Playground Express (CPE) board and integrated with a photoplethysmographic (PPG) optical sensor for heart rate monitoring and multiple embedded sensors for medical applications—in particular, sleep physiological signal monitoring. Our device is portable and lightweight. Due to the microcontroller unit (MCU)-based architecture of the proposed device, it is scalable and flexible. Thus, with the addition of different plug-and-play sensors, it can be used in many applications in different fields. The innovation introduced in this study is that with additional sensors, we can determine whether there are intermediary variables that can be modified to improve our sleep monitoring algorithm. Additionally, although the proposed device has a relatively low cost, it achieves substantially improved performance compared to the commercially available Philips ActiWatch2 wearable device, which has been approved by the Food and Drug Administration (FDA). To assess the reliability of our device, we compared physiological sleep signals recorded simultaneously from volunteers using both our device and ActiWatch2. Motion and light detection data from our device were shown to be correlated to data simultaneously collected using the ActiWatch2, with correlation coefficients of 0.78 and 0.89, respectively. For 7 days of continuous data collection, there was only one instance of a false positive, in which our device detected a sleep interval, while the ActiWatch2 did not. The most important aspect of our research is the use of an open architecture. At the hardware level, general purpose input/output (GPIO), serial peripheral interface (SPI), integrated circuit (I2C), and universal asynchronous receiver-transmitter (UART) standards were used. At the software level, an object-oriented programming methodology was used to develop the system. Because the use of plug-and-play sensors is associated with the risk of adverse outcomes, such as system instability, this study heavily relied on object-oriented programming. Object-oriented programming improves system stability when hardware components are replaced or upgraded, allowing us to change the original system components at a low cost. Therefore, our device is easily scalable and has low commercialization costs. The proposed wearable device can facilitate the long-term tracking of physiological signals in sleep monitoring and related research. The open architecture of our device facilitates collaboration and allows other researchers to adapt our device for use in their own research, which is the main characteristic and contribution of this study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3