Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film

Author:

Froemel Joerg,Akita Satoru,Tanaka Shuji

Abstract

A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect, was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin, soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response (impedance change) was measured under pressure in a frequency band from 5 to 500 MHz. A lumped-element equivalent electric circuit was used to separate the impedance of the soft magnetic metal from other parasitic elements. The impedance change clearly depended on the applied pressure. It was also shown that the impedance change could be explained by a change in relative permeability, according to the theory of the SI effect. The radial stress in the diaphragm and the relative permeability exhibited a linear relationship. At a measurement frequency of 200 MHz, the largest sensor response, with a gauge factor of 385.7, was found. It was in the same order as the conventional sensors. As the proposed device is very simple, it has the potential for application as a cheap pressure sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3