Bio-Inspired Distributed Transmission Power Control Considering QoS Fairness in Wireless Body Area Sensor Networks

Author:

Lee Chan-Jae,Jung Ji-YoungORCID,Lee Jung-RyunORCID

Abstract

Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker–Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency.

Funder

the Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3