Information Flows of Diverse Autoencoders

Author:

Lee SungyeopORCID,Jo Junghyo

Abstract

Deep learning methods have had outstanding performances in various fields. A fundamental query is why they are so effective. Information theory provides a potential answer by interpreting the learning process as the information transmission and compression of data. The information flows can be visualized on the information plane of the mutual information among the input, hidden, and output layers. In this study, we examine how the information flows are shaped by the network parameters, such as depth, sparsity, weight constraints, and hidden representations. Here, we adopt autoencoders as models of deep learning, because (i) they have clear guidelines for their information flows, and (ii) they have various species, such as vanilla, sparse, tied, variational, and label autoencoders. We measured their information flows using Rényi’s matrix-based α-order entropy functional. As learning progresses, they show a typical fitting phase where the amounts of input-to-hidden and hidden-to-output mutual information both increase. In the last stage of learning, however, some autoencoders show a simplifying phase, previously called the “compression phase”, where input-to-hidden mutual information diminishes. In particular, the sparsity regularization of hidden activities amplifies the simplifying phase. However, tied, variational, and label autoencoders do not have a simplifying phase. Nevertheless, all autoencoders have similar reconstruction errors for training and test data. Thus, the simplifying phase does not seem to be necessary for the generalization of learning.

Funder

Ministry of Science and ICT, South Korea

New Faculty Startup Fund from Seoul National University,

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. A Mathematical Theory of Communication

2. Elements of Information Theory;Cover,1999

3. Information Theory and Statistical Mechanics

4. Information Theory, Evolution, and the Origin of Life;Yockey,2005

5. Information Theory, Inference and Learning Algorithms;MacKay,2003

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Dimensionality Reduction Techniques Applied to Disease Classification Tasks;Studies in Computational Intelligence;2024

2. An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in Healthcare Datasets;2023-11-07

3. Autoencoder with Orthogonal Variant;2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE);2023-10-25

4. Multivariate Time Series Information Bottleneck;Entropy;2023-05-22

5. On the Size and Width of the Decoder of a Boolean Threshold Autoencoder;IEEE Transactions on Neural Networks and Learning Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3