Performance and Kinetics of Bioaugmentation, Biostimulation, and Natural Attenuation Processes for Bioremediation of Crude Oil-Contaminated Soils

Author:

Yaman Cevat

Abstract

Bioremediation of contaminated sites is usually limited due to the inadequate availability of nutrients and microorganisms. This study was conducted to assess the impact of bioaugmentation (BA) and biostimulation (BS) on petroleum hydrocarbon degradation efficiency. In addition, treatment performance and kinetics of different remediation processes were investigated. For this purpose, four tanks containing oil-contaminated soils were tested. Tank 1 was operated as the natural attenuation process. Then, a microbial inoculum and nutrients were added to tank 2 to promote BA and BS. In tank 3, only the BA process was adopted, whereas in tank 4, only the BS process was adopted. After 63 days of operation, the total petroleum hydrocarbon (TPH) in tank 2 was reduced from 1674 to 430 mg/kg, with 74% reduction. Tank 1, tank 3, and tank 4 indicated TPH reductions of 35%, 41%, and 66%, respectively. Microbiological analysis of the inoculum indicated that Alcanivorax was the dominant bacterium. The population of TPH degrader bacteria in tank 2 soil was two orders of magnitude higher than in the control tank. Reaction rate data were fitted with a first-order reaction rate model. The Monod kinetic constants, maximum specific growth rate (µmax), and substrate concentration at half-velocity constant (Ks) were also estimated. This study showed that the TPH removal efficiency in the combined BA and BS process was higher than in other processes tested. The populations of TPH degrading microorganisms in soil tanks were positively related to TPH removal efficiency during bioremediation of petroleum-contaminated soils.

Funder

Imam Abdulrahman Bin Faisal University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3