Using a Clustering Method to Detect Spatial Events in a Smartphone-Based Crowd-Sourced Database for Environmental Noise Assessment

Author:

Boumchich AyoubORCID,Picaut JudicaëlORCID,Bocher ErwanORCID

Abstract

Noise has become a very notable source of pollution with major impacts on health, especially in urban areas. To reduce these impacts, proper evaluation of noise is very important, for example by using noise mapping tools. The Noise-Planet project seeks to develop such tools in an open science platform, with a key open-source smartphone tool “NoiseCapture” that allows users to measure and share the noise environment as an alternative to classical methods, such as simulation tools and noise observatories, which have limitations. As an alternative solution, smartphones can be used to create a low-cost network of sensors to collect the necessary data to generate a noise map. Nevertheless, this data may suffer from problems, such as a lack of calibration or a bad location, which lowers its quality. Therefore, quality control is very crucial to enhance the data analysis and the relevance of the noise maps. Most quality control methods require a reference database to train the models. In the context of NC, this reference data can be produced during specifically organized events (NC party), during which contributors are specifically trained to collect measurements. Nevertheless, these data are not sufficient in number to create a big enough reference database, and it is still necessary to complete them. Other communities around the world use NC, and one may want to integrate the data they collected into the learning database. In order to achieve this, one must detect these data within the mass of available data. As these events are generally characterized by a higher density of measurements in space and time, in this paper we propose to apply a classical clustering method, called DBSCAN, to identify them in the NC database. We first tested this method on the existing NC party, then applied it on a global scale. Depending on the DBSCAN parameters, many clusters are thus detected, with different typologies.

Funder

European Network for Redistributing Geospatial Information to user Communities - Open Data

European Community

Région Pays de La Loire

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3