Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion

Author:

Ali Muhammad Zeeshan1,Chu Hone-Jay2ORCID,Tatas Tatas23

Affiliation:

1. Department of Earth and Space Science, Southern University of Science and Technology, Shenzhen 518055, China

2. Department of Geomatics, National Cheng Kung University, Tainan City 701401, Taiwan

3. Civil Infrastructure Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Abstract

Groundwater depletion occurs when the extraction exceeds its recharge and further impacts water resource management around the world, especially in developing countries. In India, most groundwater level observations are only available on a seasonal scale, i.e., January (late post-monsoon), May (pre-monsoon), August (monsoon), and November (early post-monsoon). The Gravity Recovery and Climate Experiment (GRACE) data are available to estimate the monthly variation in groundwater storage (GWS) by subtracting precipitation runoff, canopy water, soil moisture, and solid water (snow and ice) from the GLDAS model. Considering GRACE-based GWS data, the data fusion is further used to estimate monthly spatial maps of groundwater levels using time-varying spatial regression. Seasonal groundwater monitoring data are used in the training stage to identify spatial relations between groundwater level and GWS changes. Estimation of unknown groundwater levels through data fusion is accomplished by utilizing spatial coefficients that remain consistent with the nearest observed months. Monthly groundwater level maps show that the lowest groundwater level is 50 to 55 m below the earth’s surface in the state of Rajasthan. The accuracy of the estimated groundwater level is validated against observations, yielding an average RMSE of 2.37 m. The use of the GWS information enables identification of monthly spatial patterns of groundwater levels. The results will be employed to identify hotspots of groundwater depletion in India, facilitating efforts to mitigate the adverse effects of excessive groundwater extraction.

Funder

SATU Joint Research Scheme, and Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3