Block Copolyesters Containing 2,5-Furan and trans-1,4-Cyclohexane Subunits with Outstanding Gas Barrier Properties

Author:

Guidotti GiuliaORCID,Genovese Laura,Soccio Michelina,Gigli MatteoORCID,Munari AndreaORCID,Siracusa ValentinaORCID,Lotti NadiaORCID

Abstract

Biopolymers are gaining increasing importance as substitutes for plastics derived from fossil fuels, especially for packaging applications. In particular, furanoate-based polyesters appear as the most credible alternative due to their intriguing physic/mechanical and gas barrier properties. In this study, block copolyesters containing 2,5-furan and trans-1,4-cyclohexane moieties were synthesized by reactive blending, starting from the two parent homopolymers: poly(propylene furanoate) (PPF) and poly(propylene cyclohexanedicarboxylate) (PPCE). The whole range of molecular architectures, from long block to random copolymer with a fixed molar composition (1:1 of the two repeating units) was considered. Molecular, thermal, tensile, and gas barrier properties of the prepared materials were investigated and correlated to the copolymer structure. A strict dependence of the functional properties on the copolymers’ block length was found. In particular, short block copolymers, thanks to the introduction of more flexible cyclohexane-containing co-units, displayed high elongation at break and low elastic modulus, thus overcoming PPF’s intrinsic rigidity. Furthermore, the exceptionally low gas permeabilities of PPF were further improved due to the concomitant action of the two rings, both capable of acting as mesogenic groups in the presence of flexible aliphatic units, and thus responsible for the formation of 1D/2D ordered domains, which in turn impart outstanding barrier properties.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3