The Pathogenesis of Port Wine Stain and Sturge Weber Syndrome: Complex Interactions between Genetic Alterations and Aberrant MAPK and PI3K Activation

Author:

Nguyen Vi,Hochman Marcelo,Mihm Martin C.,Nelson J. Stuart,Tan Wenbin

Abstract

Port wine stain (PWS) is a congenital vascular malformation involving human skin. Approximately 15–20% of children a facial PWS involving the ophthalmic (V1) trigeminal dermatome are at risk for Sturge Weber syndrome (SWS), a neurocutaneous disorder with vascular malformations in the cerebral cortex on the same side of the facial PWS lesions. Recently, evidence has surfaced that advanced our understanding of the pathogenesis of PWS/SWS, including discoveries of somatic genetic mutations (GNAQ, PI3K), MAPK and PI3K aberrant activations, and molecular phenotypes of PWS endothelial cells. In this review, we summarize current knowledge on the etiology and pathology of PWS/SWS based on evidence that the activation of MAPK and/or PI3K contributes to the malformations, as well as potential futuristic treatment approaches targeting these aberrantly dysregulated signaling pathways. Current data support that: (1) PWS is a multifactorial malformation involving the entire physiological structure of human skin; (2) PWS should be pathoanatomically re-defined as “a malformation resulting from differentiation-impaired endothelial cells with a progressive dilatation of immature venule-like vasculatures”; (3) dysregulation of vascular MAPK and/or PI3K signaling during human embryonic development plays a part in the pathogenesis and progression of PWS/SWS; and (4) sporadic low frequency somatic mutations, such as GNAQ, PI3K, work as team players but not as a lone wolf, contributing to the development of vascular phenotypes. We also address many crucial questions yet to be answered in the future research investigations.

Funder

Foundation for the National Institutes of Health

U.S. Department of Defense

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3