Author:
Nguyen Vi,Hochman Marcelo,Mihm Martin C.,Nelson J. Stuart,Tan Wenbin
Abstract
Port wine stain (PWS) is a congenital vascular malformation involving human skin. Approximately 15–20% of children a facial PWS involving the ophthalmic (V1) trigeminal dermatome are at risk for Sturge Weber syndrome (SWS), a neurocutaneous disorder with vascular malformations in the cerebral cortex on the same side of the facial PWS lesions. Recently, evidence has surfaced that advanced our understanding of the pathogenesis of PWS/SWS, including discoveries of somatic genetic mutations (GNAQ, PI3K), MAPK and PI3K aberrant activations, and molecular phenotypes of PWS endothelial cells. In this review, we summarize current knowledge on the etiology and pathology of PWS/SWS based on evidence that the activation of MAPK and/or PI3K contributes to the malformations, as well as potential futuristic treatment approaches targeting these aberrantly dysregulated signaling pathways. Current data support that: (1) PWS is a multifactorial malformation involving the entire physiological structure of human skin; (2) PWS should be pathoanatomically re-defined as “a malformation resulting from differentiation-impaired endothelial cells with a progressive dilatation of immature venule-like vasculatures”; (3) dysregulation of vascular MAPK and/or PI3K signaling during human embryonic development plays a part in the pathogenesis and progression of PWS/SWS; and (4) sporadic low frequency somatic mutations, such as GNAQ, PI3K, work as team players but not as a lone wolf, contributing to the development of vascular phenotypes. We also address many crucial questions yet to be answered in the future research investigations.
Funder
Foundation for the National Institutes of Health
U.S. Department of Defense
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献