Author:
Bai Hongzhen,Wang Jianwei,Li Zhongbao,Tang Guping
Abstract
For decades, macrocyclic compounds have been widely applied in various fields owing to essential physicochemical properties such as their rigid cyclic structures, geometric dimensions (diameter and height), hydrophobic cavity, and hydrophilic interface. This review is an attempt to summarize various research accomplishments involving macrocyclic compounds for drug and gene delivery in immune-modulating therapies: the structures and benefits of main host molecules, their mechanisms regulating the immune system from cell uptake to activation of dendritic cells and T helper lymphocytes, as well as their potential immunotherapy for different diseases. Macrocyclic compounds including cucurbiturils (CBs), calixarenes, pillararenes, cyclodextrins (CyDs), macrocyclic peptides and metallo-supramolecular compounds, have their own unique physicochemical properties and functional derivatizations that enable to improve the biocompatibility, responsiveness to stimuli, and effectiveness of immune-modulating therapy. Based on abundant clarifications of the biological immunity mechanisms, representative constructions of macrocyclic compounds for immune therapies have been conducted for the investigation of treatment of different diseases including cancer, atherosclerosis, Niemann-Pick type C1 disease (NPC1), diabetes, and inflammations. Although there are critical challenges that remain to be conquered, we believe the future of macrocyclic compounds in the immune-modulating therapy must be bright.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献