Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System

Author:

Jin Xue-BoORCID,Yu Xing-Hong,Wang Xiao-Yi,Bai Yu-TingORCID,Su Ting-Li,Kong Jian-Lei

Abstract

Based on the collected weather data from the agricultural Internet of Things (IoT) system, changes in the weather can be obtained in advance, which is an effective way to plan and control sustainable agricultural production. However, it is not easy to accurately predict the future trend because the data always contain complex nonlinear relationship with multiple components. To increase the prediction performance of the weather data in the precision agriculture IoT system, this study used a deep learning predictor with sequential two-level decomposition structure, in which the weather data were decomposed into four components serially, then the gated recurrent unit (GRU) networks were trained as the sub-predictors for each component. Finally, the results from GRUs were combined to obtain the medium- and long-term prediction result. The experiments were verified for the proposed model based on weather data from the IoT system in Ningxia, China, for wolfberry planting, in which the prediction results showed that the proposed predictor can obtain the accurate prediction of temperature and humidity and meet the needs of precision agricultural production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3