A Comparative Study in Vanadium and Tungsten Leaching from Various Sources of SCR Catalysts with Local Difference

Author:

Su Qingfa,Yi Xianfang,Miao Jifa,Chen Yanting,Chen JinshengORCID,Wang Jinxiu

Abstract

Direct leaching with NaOH can be an economically acceptable method for vanadium (V) and tungsten (W) recovery from spent selective catalytic reduction (SCR) catalysts. However, different chemical-physical characteristics of catalysts would affect the V and W leaching. In this paper, the V and W leaching behavior of various sources of SCR catalysts with a local difference (yellow and gray color) were systematically investigated with alkali leaching solution under ambient pressure. Different leaching efficiencies from yellow and gray color areas were correlated with oxidation states and species of V and W on catalyst surfaces, as characterized by X-ray photoelectron spectroscopy (XPS), Raman, Fourier transform infrared spectroscopy (FTIR), and other analytic methods. For the V leaching efficiency, the samples from a gray area of catalysts (40.0–51.0%) were lower than that from the yellow area (66.8–69.8%). The higher molar ratio of V3+ and a lower molar ratio of V5+, and the lower total V content on the surface of the samples from the gray area could be the main reasons for the lower V leaching efficiency. As for the W leaching efficiency, the samples from the gray area (44.6–57.3%) were slightly higher than that from the yellow area (38.0–52.6%) of catalysts. The less total W content of surface species and stronger interaction among V–W–Ti of yellow area samples resulted in the lower leaching efficiency. These differential leaching efficiencies needed to be taken into consideration for recovering V and W from spent SCR catalysts.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3