NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand

Author:

Pompa-García MarínORCID,Martínez-Rivas José AlexisORCID,Valdez-Cepeda Ricardo David,Aguirre-Salado Carlos ArturoORCID,Rodríguez-Trejo Dante Arturo,Miranda-Aragón Liliana,Rodríguez-Flores Felipa de Jesús,Vega-Nieva Daniel José

Abstract

Fire modifies vegetation dynamics in terrestrial ecosystems. Abundant literature has studied the post-fire effects with satellite sensors; however, relatively fewer studies have used unmanned aerial vehicles (UAVs) to assess the dynamics of greenness prior to and immediately following prescribed fires. Using multispectral sensors mounted on UAVs, we documented the results of the normalized difference vegetation index (NDVI) as a proxy for pre- and post-fire greenness in a natural forest stand in northern Mexico. Using spectral reflectance techniques and the statistical analyses of Kruskal–Wallis and pairwise Wilcoxon rank-sum tests, statistically significant differences were found in the NDVI values, measured before and after controlled burning (p < 0.05). The results showed an increase in post-fire “greenness” from 0.57 to 0.65. This was interpreted as an immediate change in vegetation activity in the canopy, which could be attributable as a stimulus to heat stress. Complementary spectral indices also reinforce our findings; we recognize that further research is required, for instance, to address the timing of image capture. Our findings demonstrate the potential and some of the challenges associated with the use of UAVs to monitor prescribed fires, while also suggesting the need for more detailed physiological and phenological studies. High spatial and spectral resolution maps of greenness represent a valuable starting point for subsequent temporal monitoring and contribute to the knowledge of fire effects at fine spatial resolutions.

Funder

CONACYT

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3