Theoretical and Experimental Research on Temperature Rise Mechanism of Oil in the Sealed Cavity of Intra-Vane Type Pump

Author:

Li ShaonianORCID,Yang Pan,Zhao Ru,Liang Tao,Zhou Zhiyuan

Abstract

To improve the performance of the intra-vane type pump and optimize the friction characteristics of the three friction pairs related to the vane cavity, theoretical analysis, numerical simulation, and experimental testing are used to study the mechanism of oil temperature rise in the sealed cavity of the vane pump. First, the heat generation source and heat dissipation routeways of the oil in the oil suction and oil discharge regions are analyzed, respectively. Thermodynamic modeling is conducted based on the principle of heat transfer. Then, the oil temperature rise caused by each heat generation source was simulated using the thermodynamic model. The influence of each heat generation source and heat generation route on the oil temperature rise change was analyzed and compared. Finally, a test system for oil temperature rise is designed, and the temperature changes at six positions of the experimental pump when working at three pressures are measured through experiments. Based on simulation and experimental results, the mechanism of oil temperature rise in the sealed cavity of the intra-vane type pump is analyzed and discussed. The experimental results show that the established thermodynamic model is very anastomotic to the experimental results. The experimental test value of temperature rise is greater than the calculated value. When the outlet pressure is 6 MPa, the maximum temperature rise of the theoretical calculation is 2 °C. Meanwhile, the maximum temperature rise of the experimental analysis is 3.5 °C. The maximum difference of temperature rise between theoretical calculation and experimental test is 1.5 °C. Therefore, the model can effectively predict the oil temperature rise in the sealed cavity of the intra-vane type pump and provide theoretical guidance for the design of similar pumps.

Funder

National Natural Science Foundation of China

Industrial Support and Guidance Project of Colleges and Universities in Gansu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference26 articles.

1. Hydraulic and Pneumatic Transmission and Control;Ji,2009

2. Research Status and Development Trend of Vane Pump

3. Vane Type Hydraulic Pumps and Motors;Li,1993

4. Calculation of temperature-increase for the friction couple of connecting rod slipping shoe and swash-plate in the axial plunger motor;Wang;Lubr. Eng.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3