1-D Modeling of Two Phase Flow Process in Concentric Annular Heat Pipe and Experimental Investigation

Author:

Lee Ji-Su,Ahn Jae-Hyun,Chae Heui-Il,Lee Hi-Chan,Rhi Seok-HoORCID

Abstract

As the heat dissipation of smart devices increases, cutting-edge cooling solutions are becoming increasingly important. The heat pipe is an efficient device that boosts heat transfer and is recommended to reduce thermal management power. In this study, a concentric annular heat pipe (CAHP) with distilled water as a working fluid is proposed to enhance heat transfer, and experiments and one-dimensional analysis were carried out to predict thermal characteristics and evaluate performance. The CAHP was 90 mm in length, 62 mm in inner diameter, 70 mm in outer diameter, and 0.4 mm in thickness. At the outer surface of the internal CAHP, a two-layer screen mesh wick (500 mesh, Stainless Steel 304) that is 0.34 mm in layer thickness was installed. A ceramic heater (20 mm × 20 mm) was attached to the middle of the outer surface, and the hollow region with 48 fins was cooled by an electric fan. The experiment was carried out with variations in the heat load, the filling ratio of the working fluid, the pitch angle, the roll angle, and the airflow speed, and the one-dimensional analysis was modeled by AMESIM. The experimental results showed that the best thermal resistance of the CAHP was 3.74 °C/W with a supplied heat of 20 W, a pitch angle of −15°, and a Vair of 3 m/s. In addition, the CAHP’s 1-D simulation model using AMESIM was verified through the experimental results. However, although the modeling results according to the inclination angle could not be reflected due to the difficulty of implementing multiple orientation structures in the one-dimensional simulation model, the simulation results were found to be almost consistent with the experimental results. Case studies were conducted to understand the various characteristics of the CAHP using the model, and the optimal volume fraction, the porosity, and the number of layers of the wicks were determined to be 10, 0.345, and 2, respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3