Author:
He Guixiong,Liu Kaicheng,Wang Songcen,Lei Yang,Li Jiaxi
Abstract
With the increasing installed capacity of renewable energy in the energy system, the uncertainty of renewable energy has an increasingly prominent impact on power system planning and operation. Renewable energy such as wind and solar energy is greatly affected by the external weather. How to use a reasonable method to describe the relationship between weather and renewable energy output, so as to measure the uncertainty of renewable energy more accurately, is an important problem. To solve this problem, this paper proposes a renewable energy scenario generation method based on a conditional generation countermeasure network and combination weighting method (CWM-CGAN). In this method, the combination of AHP and the entropy weight method is used to analyze the meteorological factors, the weather classification is defined as the condition label in the conditional generation countermeasure network, and the energy scenario is generated by the conditional generation confrontation network. In this paper, the proposed method is tested with actual PV data, and the results show that the proposed model can describe the uncertainty of PV more accurately.
Funder
Science and Technology Project of SGCC
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献