Abstract
The 2D point location problem has applications in several areas, such as geographic information systems, navigation systems, motion planning, mapping, military strategy, location and tracking moves. We aim to present a new approach that expands upon current techniques and methods to locate the 2D position of a signal source sent by an emitter device. This new approach is based only on the geometric relationship between an emitter device and a system composed of m≥2 signal receiving devices. Current approaches applied to locate an emitter can be deterministic, statistical or machine-learning methods. We propose to perform this triangulation by geometric models that exploit elements of pole-polar geometry. For this purpose, we are presenting five geometric models to solve the point location problem: (1) based on centroid of points of pole-polar geometry, PPC; (2) based on convex hull region among pole-points, CHC; (3) based on centroid of points obtained by polar-lines intersections, PLI; (4) based on centroid of points obtained by tangent lines intersections, TLI; (5) based on centroid of points obtained by tangent lines intersections with minimal angles, MAI. The first one has computational cost On and whereas has the computational cost Onlognwhere n is the number of points of interest.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献