UAV-Assisted Mobile Edge Computing: Dynamic Trajectory Design and Resource Allocation

Author:

Wang Zhuwei1ORCID,Zhao Wenjing1,Hu Pengyu2,Zhang Xige3ORCID,Liu Lihan4,Fang Chao13ORCID,Sun Yanhua1ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Department of Smart Agriculture Engineering, Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China

3. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

4. School of Statistics and Data Science, Beijing Wuzi University, Beijing 101149, China

Abstract

The recent advancements of mobile edge computing (MEC) technologies and unmanned aerial vehicles (UAVs) have provided resilient and flexible computation services for ground users beyond the coverage of terrestrial service. In this paper, we focus on a UAV-assisted MEC system in which the UAV equipped with MEC servers is used to assist user devices in computing their tasks. To minimize the weighted average energy consumption and delay in the UAV-assisted MEC system, a LQR-Lagrange-based DDPG (LLDDPG) algorithm, which jointly optimizes the user task offloading and the UAV trajectory design, is proposed. To be specific, the LLDDPG algorithm consists of three subproblems. The DDPG algorithm is used to address the issue of UAV desired trajectory planning, and subsequently, the LQR-based algorithm is employed to achieve the real-time tracking control of UAV desired trajectory. Finally, the Lagrange duality method is proposed to solve the optimization problem of computational resource allocation. Simulation results indicate that the proposed LLDDPG algorithm can effectively improve the system resource management and realize the real-time UAV trajectory design.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology

Special Research Program of Academic Cooperation between Taipei University of Technology and Beijing University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3