Bandwidth Optimization of MEMS Accelerometers in Fluid Medium Environment

Author:

Xu XiangORCID,Wu Shuang,Fang Weidong,Yu Zhe,Jia Zeyu,Wang XiaoxuORCID,Bai Jian,Lu QianboORCID

Abstract

There is a constraint between the dynamic range and the bandwidth of MEMS accelerometers. When the input acceleration is comparatively large, the squeeze film damping will increase dramatically with the increase in the oscillation amplitude, resulting in a decrease in bandwidth. Conventional models still lack a complete vibration response analysis in large amplitude ratios and cannot offer a suitable guide in the optimization of such devices. In this paper, the vibration response analysis of the sensing unit of an accelerometer in large amplitude ratios is first completed. Then, the optimal design of the sensing unit is proposed to solve the contradiction between the dynamic range and the bandwidth of the accelerometer. Finally, the results of the vibration experiment prove that the maximum bandwidth can be achieved with 0~10g external acceleration, which shows the effectiveness of the design guide. The new vibration analysis with the complete model of squeeze film damping is applicable to all sensitive structures based on vibration, not limited to the MEMS accelerometer studied in this thesis. The bandwidth optimal scheme also provides a strong reference for similar structures with large oscillation amplitude ratios.

Funder

National Postdoctoral Program for Innovative Talents

Natural Science Basic Research Program of Shaanxi Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Equipment Development Department Rapid Support Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3