Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection

Author:

Wei Hanyue12,Zhou Yifu12,Ma Feiya12,Yang Rui12,Liang Jian12ORCID,Ren Liyong123ORCID

Affiliation:

1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

2. Xi’an Key Laboratory of Optical Information Manipulation and Augmentation (OMA), Xi’an 710119, China

3. Robust (Xixian New Area) Opto-Electro Technologies Co., Ltd., Xi’an 712000, China

Abstract

This paper proposes a full-automatic high-efficiency Mueller matrix microscopic imaging (MMMI) system based on the tissue microarray (TMA) for cancer inspection for the first time. By performing a polar decomposition on the sample’s Mueller matrix (MM) obtained by a transmissive MMMI system we established, the linear phase retardance equivalent waveplate fast-axis azimuth and the linear phase retardance are obtained for distinguishing the cancerous tissues from the normal ones based on the differences in their polarization characteristics, where three analyses methods including statistical analysis, the gray-level co-occurrence matrix analysis (GLCM) and the Tamura image processing method (TIPM) are used. Previous MMMI medical diagnostics typically utilized discrete slices for inspection under a high-magnification objective (20×–50×) with a small field of view, while we use the TMA under a low-magnification objective (5×) with a large field of view. Experimental results indicate that MMMI based on TMA can effectively analyze the pathological variations in biological tissues, inspect cancerous cervical tissues, and thus contribute to the diagnosis of postoperative cancer biopsies. Such an inspection method, using a large number of samples within a TMA, is beneficial for obtaining consistent findings and good reproducibility.

Funder

Science and Technology Development Funds of Shaanxi Province

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3