Use of Digitalisation and Machine Learning Techniques in Therapeutic Intervention at Early Ages: Supervised and Unsupervised Analysis

Author:

Sáiz-Manzanares María Consuelo1ORCID,Solórzano Mulas Almudena2,Escolar-Llamazares María Camino1ORCID,Alcantud Marín Francisco3ORCID,Rodríguez-Arribas Sandra4ORCID,Velasco-Saiz Rut5ORCID

Affiliation:

1. DATAHES Research Group, Consolidated Research Unit Nº. 348, Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain

2. Unidad de Atención Temprana, ASPACE Salamanca, 37185 Villamayor de Armuña, Spain

3. Department of Developmental and Educational Psychology, Universitat de València, 46010 València, Spain

4. BEST-AI Research Group, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, 09006 Burgos, Spain

5. Facultad de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain

Abstract

Advances in technology and artificial intelligence (smart healthcare) open up a range of possibilities for precision intervention in the field of health sciences. The objectives of this study were to analyse the functionality of using supervised (prediction and classification) and unsupervised (clustering) machine learning techniques to analyse results related to the development of functional skills in patients at developmental ages of 0–6 years. We worked with a sample of 113 patients, of whom 49 were cared for in a specific centre for people with motor impairments (Group 1) and 64 were cared for in a specific early care programme for patients with different impairments (Group 2). The results indicated that in Group 1, chronological age predicted the development of functional skills at 85% and in Group 2 at 65%. The classification variable detected was functional development in the upper extremities. Two clusters were detected within each group that allowed us to determine the patterns of functional development in each patient with respect to functional skills. The use of smart healthcare resources has a promising future in the field of early care. However, data recording in web applications needs to be planned, and the automation of results through machine learning techniques is required.

Funder

European Commission

Publisher

MDPI AG

Reference46 articles.

1. Early Intervention: A Global Perspective;Blackman;Infants Young Child.,2002

2. Peterander, F., Speck, O., Pithon, G., and Terrisse, B. (1999). Les Tendances Actuelles de L’intervention Précoce en Europe, Mardaga Publishing House.

3. Federación Estatal de Asociaciones de Profesionales de Atención Temprana (GAT) (2005). Libro Blanco Atencion Temprana, Real Patron sobre Discapac. Available online: http://bit.ly/3zgm2ph.

4. Gómez Artiga, A., Viguer Seguí, P., and Cantero López, M.J. (2005). Intervención Temprana: Desarrollo Óptimo de 0 a 6 Años [Early Intervention: Optimal Development from 0 to 6 Years of Age], Pirámide. Psicología.

5. Anderson, R.G. (1987). Development of Business Information Systems, Blackwell Scientific Publication.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3