Habit-DisHabit Design with a Quadratic Equation: A Better Model of the Hemodynamic Changes in Preschoolers during the Dimension Change Card Sorting Task

Author:

Wu Dandan1,Chang Chunqi2ORCID,Yang Jinfeng2,Luo Jiutong34ORCID,Xie Sha3ORCID,Li Hui1ORCID

Affiliation:

1. Faculty of Education and Human Development, The Education University of Hong Kong, Hong Kong SAR, China

2. School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China

3. Faculty of Education, Shenzhen University, Shenzhen 518060, China

4. Faculty of Education, Beijing Normal University, Beijing 100875, China

Abstract

General linear modeling (GLM) has been widely employed to estimate the hemodynamic changes observed by functional near infrared spectroscopy (fNIRS) technology, which are found to be nonlinear rather than linear, however. Therefore, GLM might not be appropriate for modeling the hemodynamic changes evoked by cognitive processing in developmental neurocognitive studies. There is an urgent need to identify a better statistical model to fit into the nonlinear fNIRS data. This study addressed this need by developing a quadratic equation model to reanalyze the existing fNIRS data (N = 38, Mage = 5.0 years, SD = 0.69 years, 17 girls) collected from the mixed-order design Dimensional Change Card Sort (DCCS) task and verified the model with a new set of data with the Habit-DisHabit design. First, comparing the quadratic and cubic modeling results of the mixed-order design data indicated that the proposed quadratic equation was better than GLM and cubic regression to model the oxygenated hemoglobin (HbO) changes in this task. Second, applying this quadratic model with the Habit-DisHabit design data verified its suitability and indicated that the new design was more effective in identifying the neural correlates of cognitive shifting than the mixed-order design. These findings jointly indicate that Habit-DisHabit Design with a quadratic equation might better model the hemodynamic changes in preschoolers during the DCCS task.

Funder

National Natural Science Foundation of China

Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University

Seed Funding Grant from the Education University of Hong Kong

Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions

Education University of Hong Kong

Publisher

MDPI AG

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3