3D Surface Topographic Optical Scans Yield Highly Reliable Global Spine Range of Motion Measurements in Scoliotic and Non-Scoliotic Adolescents

Author:

Page Kira,Gmelich Caroline,Thakur Ankush,Heyer Jessica H.ORCID,Hillstrom Howard J.,Groisser Benjamin,Morse Kyle W.,Li Don,Cunningham Matthew E.,Hresko M. Timothy,Widmann Roger F.

Abstract

Background: Adolescent idiopathic scoliosis results in three dimensional changes to a patient’s body, which may change a patient’s range of motion. Surface topography is an emerging technology to evaluate three dimensional parameters in patients with scoliosis. The goal of this paper is to introduce novel and reliable surface topographic measurements for the assessment of global coronal and sagittal range of motion of the spine in adolescents, and to determine if these measurements can distinguish between adolescents with lumbar scoliosis and those without scoliosis. Methods: This study is a retrospective cohort study of a prospectively collected registry. Using a surface topographic scanner, a finger to floor and lateral bending scans were performed on each subject. Inter- and intra-rater reliabilities were assessed for each measurement. ANOVA analysis was used to test comparative hypotheses. Results: Inter-rater reliability for lateral bending fingertip asymmetry (LBFA) and lateral bending acromia asymmetry (LBAA) displayed poor reliability, while the coronal angle asymmetry (CAA), coronal angle range of motion (CAR), forward bending finger to floor (FBFF), forward bending acromia to floor (FBAF), sagittal angle (SA), and sagittal angle normalized (SAN) demonstrated good to excellent reliability. There was a significant difference between controls and lumbar scoliosis patients for LBFA, LBAA, CAA and FBAF (p-values < 0.01). Conclusion: Surface topography yields a reliable and rapid process for measuring global spine range of motion in the coronal and sagittal planes. Using these tools, there was a significant difference in measurements between patients with lumbar scoliosis and controls. In the future, we hope to be able to assess and predict perioperative spinal mobility changes.

Funder

Leon Root Chair in Pediatric Orthopaedic Surgery

Hospital for Special Surgery Lerner’s Children’s Pavilion Research Fund

Foundation Yves Cotrel Basic Science Research Grant

Neumann Family Fund Foundation

Professor Rahamimoff Travel Grant for Young Scientists of the US-Israel Binational Science Foundation

HSS Department of Radiology

HSS

Publisher

MDPI AG

Subject

Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3