Abstract
The construction and gradual installation of turbines on wind farms has been hindered by the high cost of the energy production. An effective way to minimize energy costs is via the optimal design of wind turbines and their layout, but relevant and synthetic studies are lacking. This paper proposes a method to minimize the energy cost of offshore wind farms by simultaneously optimizing the rated wind speed, the rotor radius of wind turbines and their layout. Firstly, a new, mixed mathematical formulation of the energy cost is presented, considering the Weibull distribution for wind, the characterizing parameters of wind turbines and the distance between two turbines. Secondly, to obtain the minimum energy cost, a composite optimization algorithm was developed, which consists of an iterative method and an improved particle swarm optimization algorithm. The former was used to search the minimal energy costs that relate to the design parameters of a single wind turbine, while the latter was adopted for optimizing the layout of the wind turbines iteratively. Finally, the proposed method was applied to three case studies with variable wind speed and constant wind direction. Results of the case studies show that the reduced energy cost after optimization has a range of 0–0.001 $/kWh, which confirms the effectiveness of the proposed approach. Meanwhile, the layout of the wind turbines after optimization tends to locate the two wind turbines with the biggest spacing in the wind direction, which justifies the utilization of layout optimization. Furthermore, exploring the optimally designed parameters of wind turbines revealed that the wind farms with a high mean wind speed can have a wider range of turbine capacity than those with a low wind speed, which offers more freedom for the designers when constructing offshore wind farms at wind sites with rich wind resources.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献